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Introduction

Control theory deals with the maneuver of the state or trajectory

of the system, modelled by ODE. Some of the important properties

of such systems are controllability, observability and optimality.

In this lecture we show how operator theoretic approach in

function spaces is useful to discuss the above mentioned

properties. We substantiate our theory by concrete examples.

Notations :

Rn n-dimensional Euclidean space

L2([t0, t1],Rm) the space of vectors ~u ∈ Rm in which

each component is a function in L2([t0, t1])
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Controllability

Let us consider the linear system of the form

d~x

dt
= A(t)~x(t) + B(t)~u(t), ~x(t) = ~x0 (1)

where A(t) is an n× n matrix, B(t) is an n×m matrix, ~u(t) ∈ Rm

and ~x(t) ∈ Rn.

~u(t) is called control or input vector and ~x(t) the corresponding

trajectory or state of the system.

The typical controllability problem involves the determination of

the control vector ~u(t) such that the state vector ~x(t) has the

desired properties.
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Controllability

We assume that the entries of the matrices A(t), B(t) are

continuous so that the above system has a unique solution ~x(t) for

a given input ~u(t).

Definition 1.

The linear system given by Equation (1) is said to be

controllable if given any initial state ~x0 and any final state ~xf in

Rn, there exist a control ~u(t) so that the corresponding

trajectory ~x(t) of Equation (1) satisfies the condition

~x(t0) = ~x0, ~x(tf ) = ~xf .

The control ~u(t) is said to steer the trajectory from the initial

state ~x0 to the final state ~xf .
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Controllability

If an input to a system can be found that takes every state variable

from a desired initial state to a desired final state, the system is

said to be controllable; otherwise, the system is uncontrollable.

The ability to control all of the state variables is a requirement for

the design of a controller. State-variable feedback gains cannot be

designed if any state variable is uncontrollable.

Uncontrollability can be viewed best with diagonalized systems.
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Controllability

Assume that φ(t, t0) is the transition matrix of the above system.

Then by the variation of parameter formula, Equation (1) is

equivalent to the following integral equation

~x(t) = φ(t, t0)~x0 +

∫ t

t0

φ(t, τ)B(τ)~u(τ)dτ.

As (t, τ)→ φ(t, τ) is continuous, it follows that

‖φ(t, τ)‖ ≤ M

for all t, τ ∈ [t0, tf ].
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Controllability

So controllability of Equation (1) is equivalent to finding ~u(t) such

that

~xf = ~x(tf ) = φ(tf , t0)~x0 +

∫ tf

t0

φ(tf , τ)B(τ)~u(τ)dτ.

Equivalently,

~x(tf )− φ(tf , t0)~x0 =

∫ tf

t0

φ(tf , τ)B(τ)~u(τ)dτ. (2)
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Controllability

Let us define a linear operator L : X = L2([t0, tf ],Rm) by

[L~u] =

∫ tf

t0

φ(tf , τ)B(τ)~u(τ)dτ.

Then, in view of (2), the controllability problem reduces to

showing that operator L is surjective.
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Controllability

Theorem 2.

The system given by Equation (1) is controllable iff the

controllability Grammian

W (t0, tf ) =

∫ tf

t0

[φ(tf , τ)B(τ)Bτ (τ)φτ (t, tf )]dτ

is nonsingular. A control ~u(t) steering the system from the initial

state ~x0 to the final state ~xf is given by

~u(t) = Bτ (t)φτ (tf , t)[W (t0, tf )]−1[~xf − φ(tf , t0)~x0].
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Controllability

The controllability Grammian W (t0, tf ) has some interesting

properties, which we now describe.

Theorem 3.

(i) W (t0, tf ) is symmetric and positive semidefinite.

(ii) W (t0, tf ) satisfies the linear differential equation

d

dt
[W (t0, t)] = A(t)W (t0, t) + W (t0, t)Aτ (t) + B(t)Bτ (t)

W (t0, t0) = 0

(iii) W (t0, tf ) satisfies functional equation

W (t0, tf ) = W (t0, t) + φ(tf , t)W (t, tf )φτ (tf , t).
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Controllability

Remark 4.

Theorem 2 implies that to check the controllability of the linear

system given by Equation (1), one needs to verify the invertibility

of the Grammian matrix W (t0, tf ). This is a very tedious task.

However, if A(t) and B(t) are time invariant matrices A,B, then

the controllability of the linear system is obtained in terms of the

rank of the following controllability matrix

C = [B,AB, . . . ,An−1B] (3)
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Controllability

The next theorem, in this direction, is due to Kalman.

Theorem 5.

The linear autonomous system

d~x

dt
= A~x(t) + B~u(t), ~x(t0) = ~x0 (4)

is controllable iff the controllability matrix C given by Equation

(3) has rank n.
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Controllability

Example 6.

Let us consider the linearized motion of a satellite of unit mass

orbiting around the earth. This is given by the control system of

the form given by Equation (4), where

A =


0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0

 , B =


0 0

1 0

0 0

0 1

 .
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Controllability

For this system, one can easily compute the controllability matrix,

C = [B,AB,A2B,A3B]. It is given by

C =


0 0 1 0 0 2ω −ω2 0

1 0 0 2ω −ω2 0 0 −2ω3

0 0 0 1 −2ω 0 0 −4ω2

0 1 −2ω 0 0 −4ω2 2ω3 0

 .
One can verify that rank of C is 4 and hence the linearized motion

of the satellite is controllable. It is interesting to ask the following

question.

What happens when one of the controls or thrusts becomes

inoperative ?
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Controllability

For this purpose set u2 = 0 and hence B reduces to

B1 =
[
0 1 0 0

]T
.

So, the controllability matrix C1 = [B1,AB1,A
2B1,A

3B1], is given

by

C1 =


0 1 0 −ω2

1 0 −ω2 0

0 0 −2ω 0

0 −2ω 0 2ω3

 .
C1 has rank 3.
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Controllability

On the other hand u1 = 0 reduces B to B2 =
[
0 0 0 1

]T
and

this gives controllability matrix C2 = [B2,AB2,A
2B2,A

3B2], as

C2 =


0 0 2ω 0

0 2ω 0 −2ω3

0 1 0 −4ω2

1 0 −4ω2 0

 .
C2 has rank 4.

Since u1 was radial thrust and u2 was trangential thrust, we see

that the loss of radial thrust does not destroy controllability where

as loss of tangential thrust does. In terms of practical importance

of satellite in motion, the above analysis means that we can

maneuver the satellite just with radial rocket thrust.
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Observability

Consider the input-output system of the form

d~x

dt
= A(t)~x(t) + B(t)~x(t) (5)

~y(t) = C (t)~x(t) (6)

The questions concerning observability relate to the problem of

determining the values of the state vector ~x(t), knowing only the

output vector ~y(t) over some interval I = [t0, tf ] of time.

In other words, if the initial-state vector, ~x(t0), can be found from

~u(t) and y(t) measured over a finite interval of time from t0, the

system is said to be observable; otherwise the system is said to be

unobservable.

P. Sam Johnson Control Theory of Linear Systems 17/28



Observability

A(t) ∈ Rn×n, B(t) ∈ Rn×m are assumed to be continuous

functions of t. Let φ(t, t0) be the transition matrix of the above

system.

Then the output vector ~y(t) can be expressed as

~y(t) = C (t)φ(t, t0)~x(t0) + ~y1(t) (7)

where ~y1(t) is known quantity of the form

y1(t) =

∫ tf

t0

C (t)φ(t, τ)B(τ)µ(τ)dτ.
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Observability

Thus, from Equation (7) it follows that if we are concerned about

the determination of ~x(t0), based on the output ~y(t), we need only

the homogeneous system

d~x

dt
= A~x(t), ~y(t) = C (t)~x(t) (8)

in place of Equation (5).
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Observability

Definition 7.

We shall say that Equation (8) is observable on I = [t0, tf ] if

~y(t) = 0 on I implies that ~x(t) = 0 on I .

We define a linear operator L : Rn 7→ X = L2([t0, tf ],Rn) as

[L~x0](t) = C (t)φ(t, t0)~x0 = H(t)~x0

where H : t → H(t) is a matrix function which is continuous in t.

Observability of the system Equation (8), then, reduces to

proving that L is one-one.

The following theorem gives the observability of the system given

by Equation (8), in terms of the nonsingularity of the matrix

M(t0, tf ).

P. Sam Johnson Control Theory of Linear Systems 20/28



Observability

Theorem 8.

For the homogeneous system given by Equation (8), it is possible

to determine the initial state ~x(t0) within an additive constant

vector which lies with null space of M(t0, tf ) which is defined by

M(t0, tf ) =

∫ tf

t0

φT (t, t0)CT (t)C (t)φ(t, t0)dt. (9)

Hence ~x(t0) is uniquely determined if M(t0, tf ) is nonsingular.

That is, Equation (8) is observable iff M(t0, tf ) is nonsingular.

M(t0, tf ) defined by Equation (9) is called the observability

Grammian.
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Observability

Theorem 9.

The observability Grammian M(t0, tf ) satisfies the following

properties

(i) M(t0, tf ) is symmetric and positive semidefinite.

(ii) M(t0, tf ) satisfies the following matrix differential equation

d

dt
[M(t, t1)] = −AT (t)M(t, t1)−M(t, t1)A(t)− CT (t)C (t)

M(t1, t1) = 0.

(iii) M(t0, tf ) satisfies the functional equation

M(t0, tf ) = M(t0, t) + φT (t, t0)M(t, t1)φ(t, t0).
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Observability

We also have the following theorem giving the necessary and

sufficient contition which is easily verifiable for observability.

Let us denote by O the observability matrix

O = [C ,CA, . . . ,CAn−1]. (10)

Theorem 10.

The system given by Equation (8) is observable iff the observable

matrix O given by Equation (10) is of rank n.
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Observability

Example 11.

As a continuation of Example 6, consider the satellite orbiting

around the Earth.

We assume that we can measure only the distance r of the

satellite from the centre of the force and the angle θ. So, the

defining state-output equation of the satellite is given by

d~x

dt
= A~x(t), ~y(t) = Cx(t)

where

A =


0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0

 ,C =

[
1 0 0 0

0 0 1 0

]
.
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Observability

~x = (x1, x2, x3, x4), ~y = (y1, y2); y1 = r , y2 = θ being the radial

and angle measurements.

So, the observability matrix O is given by

O = [C ,CA,CA2,CA3]

=



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3ω2 0 0 2ω

0 −2ω 0 0

0 −ω2 0 0

−6ω3 0 0 −4ω2


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Observability

Rank of C is 4 and hence the above state-output system is

observable. To minimize the measurement, we might be tempted

to measure y1 only not y2. This gives

C1 =
[
1 0 0 0 0

]T
and

O1 = [C1,C1A,C1A
2,C1A

3] =


1 0 0 0

0 1 0 0

3ω2 0 0 2ω

0 −ω2 0 0


which is of rank 3.
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Observability

However, if y1 is not measured, we get

C2 =
[
0 0 1 0 0

]T
O2 = [C2,C2A,C2A

2,C2A
3]

=


0 0 1 0

0 0 0 1

0 −2ω 0 0

−6ω3 0 0 −4ω2


which is of rank 4. Thus, the state of the satellite is known from

angle measurements alone but this is not so for radial

measurements.
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